

AMATEUR SATELLITE FREQUENCY COORDINATION REQUEST

(Make a separate request for each space station to be operated in the amateur-satellite service.)

Administrative information:

0	DOCUMENT CONTROL	
0a	Date submitted	(dd-MMM-yyyy)
0b	Expected launch date	(dd-MMM-yyyy)
0c	Document revision number (start at	Ver.0.1
	zero and increment with each	
	revised request)	
1	SPACECRAFT (published)	
1a	Name before launch	NEXUS
1b	Proposed name after launch	NEXUS
1c	Country of license	JAPAN
1d	API/A special section number	TBD
2	LICENSEE OF THE SPACE STATIC	DN (published)
2a	First (given) name	Yasuyuki
2b	Last (family) name	Miyazaki
2c	Call sign	JQ1YGV
2d	Postal address	7-24-1 Narashinodai, Funabashi, Chiba 274-8501, Japan
2e	Telephone number (including	+81-47-469-5430
	country code)	
2f	E-mail address (licensee will be	miyazaki@forth.aero.cst.nihon-u.ac.jp
	our point of contact and receive all	
	correspondence)	
2g	Skype or FaceTIme name (if	N/A
	available)	
2h	Licensee's position in any	Professor
	organisation referenced in item 3a.	
2i	List names and e-mail addresses	tamura@forth.aero.cst.nihon-u.ac.jp
	of additional people who should	<u>suzuki@jortn.aeio.cst.ninon-u.ac.jp</u>
	receive copies of correspondence.	
2		complete this section for EACU participation
3	ORGANISATIONS (published) — (complete this section for EACH participating
20	Name of organization	Department of Aerospace Engineering, College of Science and
зa	Name of organisation	Technology. Nihon University
		The Japan AMSAT Association (JAMSAT)
		The Japan Amateur Radio League, Inc. (JARL)

3b	Physical address	Department of Aerospace Engineering, College of Science and Technology, Nihon University 7-24-1 Narashinodai, Funabashi, Chiba 274-8501, Japan
		The Japan AMSAT Association (JAMSAT) 3-30-22 Wada, Suginami, Tokyo 166-8532, Japan
		The Japan Amateur Radio League, Inc. (JARL) 3-43-1 Minamiothuka, Toshima, Tokyo 170-8073, Japan
3c	Postal address	Department of Aerospace Engineering, College of Science and Technology, Nihon University 7-24-1 Narashinodai, Funabashi, Chiba 274-8501, Japan
		The Japan AMSAT Association (JAMSAT) 3-30-22 Wada, Suginami, Tokyo 166-8532, Japan
		The Japan Amateur Radio League, Inc. (JARL) 3-43-1 Minamiothuka, Toshima, Tokyo 170-8073, Japan
3d	Telephone number (including country code)	Department of Aerospace Engineering, College of Science and Technology, Nihon University +81-47-469-5430
3e	E-mail address	miyazaki@forth.aero.cst.nihon-u.ac.jp
3f	Web site URL	Department of Aerospace Engineering, College of Science and Technology, Nihon University <u>http://sat.aero.cst.nihon-u.ac.jp/nexus/</u>
		The Japan AMSAT Association (JAMSAT) http://www.jamsat.or.jp/
		The Japan Amateur Radio League, Inc. (JARL) http://www.jarl.or.jp/
3g	National Amateur Radio Society (including contact information)	The Japan Amateur Radio League, Inc. (JARL) http://www.jarl.or.jp/
3h	National Amateur Satellite organisation (including contact information)	The Japan AMSAT Association (JAMSAT) http://www.jamsat.or.jp/
<u>3</u> i	Have you involved your National Amateur Satellite organization and/or National Amateur Radio Society? Please, explain.	We are the members of JARL and JAMSAT.

Space station information:

4	SPACE STATION (published)		
4a	Mission(s). Describe in detail what the space station is planned to do. Use as much space as you need.	The	main mission of NEXUS is as follows. Demonstration of π /4 shift QPSK transmitter. NEXUS performs data downlink by π /4 shift QPSK transmitter using the amateur radio band. We will perform the new radiowave format fast communication between satellite and groundstation To evaluate its superiority, against the communication speed(1200~9600bps) which was the mainstream in conventional amateur radio communication. The demodulation performs the evaluation by using both hardware and software proprietary.
		*	Demonstration of transponder.

		We perform a space demonstration of transponder made by JAMSAT .
		We will operate the liner transponder for amateur radio operators.
		Demonstration of FM transceiver.
		We perform a space demonstration of FM transceiver which (FSK,AFSK,GMSK) made by JAMSAT.
		 Demonstration of a camera system with high versatility and multifunction.
		Construction of a camera system with high versatility, focused on newly selected camera modules. We will take some
		pictures of the earth and use them for amateur radio
		operators.
4b	Planned duration of each part of	Critical phase
	the mission.	 Link verification between the satellite and the ground station. The acquisition of House Keeping data by CW beacon. 1 ~ 3 days after launch
		Orbit determination
		Specific object
		3 ~ 7 days after launch
		Check out of satellite function
		Test operation of satellite system and equipment.
		a) FM transmitter and receiver(AFSK1200[bps],
		GMSK9600[bps]).
		 D) Acquisition of sensor data. c) EM transmitter and receiver.
		(FSK(600[bps]~14400[bps]) GMSK(9600[bps]) AFSK(1200
		[bps])).
		d) Confirmation of the power and heat balance.
		Within 1 months after launch
		Mission equipment operation check
		a) $\pi/4$ shift QPSK transmitter test transmission
		b) Open part of the transponder.
		c) FM transmitter and receiver test operate.
		d) Photographed by the on board camera.
		Within 3 months after launch
		Evaluation of the success level
		a) Performance evaluation of the $\pi/4$ shift QPSK transmitter.
		c) Demonstration of camera system
		Within 1 years after launch
4c	Proposed space station	CW/FM integrated transmitter
	transmitting frequency plan	Frequency: 437 [MHz]
	a noquonoy plan.	Output power: 0.1[W](CW), 0.8[W](FM)
	List for each frequency or	Emission designator: 500HA1A (CW)
	froquonov bond	Modulation method: Morse(CW)
		AFSK1200bps,GMSK9600bps
	- from one or from one hand	Antenna gain: -2[dB]
	\rightarrow inequency or inequency band	Antenna pattern: nearly same as mono-pole antenna pattern.
	(e.g. 435-438 MHz)	
	•	Transmit frequency: 435 [MHz] (o.g. 435 490 435 500)
	→ requested frequency, if any	Total pass band: 20kHz
		Output power: 0.5[W]
	→ output power	Antenna gain: -2[dB]
		Antenna pattern: nearly same as mono-pole antenna pattern.
		π /4 shift QPSK transmitter
		Transmit frequency: 435 [MHz](Using the same frequency as
		the center frequency of the transponder)

	→ ITU emission designator ^{1,2}	Output power: 0.8[W]
		Emission designator: 30K0G1D
	\rightarrow common description of the	Modulation method: π /4 shift QPSK 38400bps
	emission including modulation type	Antenna gain: -2[dB]
	AND data rata ³	Antenna pattern: nearly same as mono-pole antenna pattern.
	AND DATA FATE	EM transcolivor
	- antanno gain and nattarn	Transmit frequency: 435 [MHz] (e.g. 435 480-435 500)
	✓ antenna gain and pattern	(Same of Linear transponder downlink frequency)
	→ attitude stabilisation if used	Output power: 0.4[W]
		Emission designator: 09K0F1D,18K5F1D,15K0F1D,09K0F2D Modulation method:
		ESK600-9600bps(variability) GMSK9600bps AESK1200bps
		Antenna gain: -2[dB]
		Antenna pattern: nearly same as mono-pole antenna pattern.
14	Proposed space station	FM receiver
μu	ropuseu space station	Frequency: 145 [MHz]
	receiving frequency plan.	Emission designator: 20K0F2D
		Modulation method: AFSK 1200bps
	List for each frequency or	Antenna gain: -2[dB]
	frequency band:	Antenna pattern: nearly same as mono-pole antenna pattern.
		Noise temperature: 300[K]
	➔ frequency band	Linear transponder
		Reception frequency: 145 [MHz] (Using a different frequency
	→ requested frequency, if any	from the FM receiver)
		(e.g. 145.850-145.870MHz)
	➔ ITU emission designator	Total pass band: 20kHz
		Noise temperature: 300[K]
	→ common description of the	Antenna gain: -2[dB]
	amission including modulation tune	Antenna pattern. neany same as mono-pole antenna pattern.
		EM transcolvor
	AND Data rate	Fini transcerver Frequency: 145 [MHz] (Same of transponder unlink
	• <i>i i i i i i i i i i</i>	frequency)
	→ noise temperature	Emission designator: 16K0F1D
		Modulation method: FSK 1200bps
	➔ associated antenna gain and	Antenna gain: -2[dB]
	pattern	Antenna pattern: nearly same as mono-pole antenna pattern.
		Noise temperature: 600[K]
4e	Physical structure.	Structure material: A7075-T7351
-	General description including	Satellite mass: 1.19kg
	dimensions mass antennas and	Dimension: 109.2×105.2×113.5[mm]
	antenna nlacement whether	Antenna: mono-pole antenna
	antenna placement, whether	Antenna material: elastic phosphorus bronze strip with Letion
	stabilized of turnbling, etc. Give	coating on the antenna sunace
	UKL S TOP GRAWINGS.	Please refer to Appendix 1 for the details of the structure.
4f	Functional Description.	The abbreviations used in the following are as follows.
	Describe each sections function	• SG(Sensor Group Sub System)
	within the satellite.	• EPS(Electric Power Supply Sub System)
		• FINIK(Flight Management Receiver Sub System)
		• Cvv(Continuous vvave Sub System)
		• CADH (Command & Data Handling Sub System)
		• CAM(Camera Sub System)

¹ ITU emission designators are explained at: <u>http://life.itu.int/radioclub/rr/ap01.htm</u>. (Thank you, 4U1ITU.) Effect of Doppler shift is NOT included when determining bandwidth.

 $^{^2}$ If using a frequency changing transponder, indicate the transmitting bandwidth. Effect of Doppler shift is NOT included when determining bandwidth.

³ Common emission description means terms like transponder, NBFM, PSK31, 1200 baud packet (AFSK on FM), etc.

		Transponder : Transponder is a radio repeater with an uplink frequency of 145MHz, and a downlink frequency of 435MHz. The transmission power is 0.5[W].
		π /4 shift QPSK transmitter: The π/4 shift QPSK transmitter is a transmitter with a communication speed of 38400bps. It will be used for downlink of data in the band of 435MHz. The transmission power is 0.8[W].
		SG : SG a geomagnetism sensor, gyro sensor, temperature sensor, and a galvanometer is on board of NEXUS. SG has a function of relaying the sensor data to other sub systems.
		EPS : Six Li-ion secondary batteries (3.7V-1880mAh) in parallel are stored in NEXUS. NEXUS has 12 solar cells arranged 2 in series and 6 in parallel.
		Communication system : a total of 4 transceivers; an integrated CW/FM(AFSK1200bps, GMSK9600bps) transmitter, FM receiver, QPSK transmitter, and a transponder are on board. Each of the integrated CW/FM transmitter' s transmission powers are; CW:0.1[W], FM(AFSK, GMSK):0.8[W]. The 437MHz band will be used for downlink, and 145MHz band for uplink. Also, for an antenna, a monopole antenna will be used.
		FMR : FMR receives the uplink command from the earth station, it sends a command received in each of the sub-system.
		CW : This system transmits the housekeeping data to the earth station in Morse code.
		C&DH : C&DH transmits the camera data and the sensor data of the downlink, also SSTV, degi-talker sound by using FM transmitter(AFSK1200bps, GMSK9600bps). In addition, C&DH manages a mission equipment π / 4 shift QPSK transmitter, linear transponder and the CAM.
		CAM : This using for shooting of Earth images by a small camera module. Captured image data is stored in a Flash EPROM, and camera sends the data to the ground station through the C&DH.
4g	Power budget. Describe each power source, power consuming section, power storage, and overall power budget.	Please refer to Appendix 2 for the details of the power budget.
5	TELECOMMAND (NOT published)	
5a	List:	Fin receiver Frequency: 145 [MHz] ITU emission designator: 20K0F2D Modulation method: AFSK1200bps
	→ space station telecommand frequencies,	Noise temperature: 300[K] Antenna pattern: nearly same as mono-pole antenna pattern Link power budget: 50W(Earth Station) Cipher system: N/A (NEXUS is based on AX.25 protocol.)
	➔ ITU emission designator(s)	Please refer to Appendix 3 for the details of the link budget.
	→ common description of the emission including modulation type AND data rate	
	➔ link power budget(s)	
	➔ a general description of any cipher system	

5b	Positive space station transmitter control. Explain how telecommand stations will turn off the space station transmitter(s) immediately, even in the presence of user traffic and/or space station computer system failure. NOTE: Transmitter turn off control	NEXUS turns off the system by the kill command from the following earth station. Department of Aerospace Engineering, College of Science and Technology, Nihon University Amateur Radio Station Call sign: JQ1YGV Location: Latitude 35:43:30.0000 N_DMS Longitude 140:03:25.2000 E_DMS Altitude 50.0[m] Address: 7-24-1 Narashinodai, Funabashi, Chiba 274-8501, Japan
	from the ground is absolutely required. Good engineering practice is to make this capability independent of all other systems.	
	http://www.iaru.org/satellite/Control lingSatellites v27.pdf.	
5c	Telecommand stations. List telecommand stations, including contact details, for sufficient Earth command stations to be established before launch to insure that any harmful interference caused by emissions from a station in the amateur- satellite service can be terminated immediately. See RR 25.11 and RR 22.1	Department of Aerospace Engineering, College of Science and Technology, Nihon University Amateur Radio Station Call sign: JQ1YGV Location: Latitude 35:43:30.0000 N Longitude 140:03:25.2000 E Altitude 50.0[m] Address: 7-24-1 Narashinodai, Funabashi, Chiba 274-8501, Japan Tel: +81-47-469-5430
5d	Optional: Give the complete space station turn off procedure.	N/A
	As a service, the IARU Satellite Advisor will keep the space station turn off procedure as a backup for your operation. Only the space station licensee may request the information. If interference occurs and the licensee cannot be located, the licensee grants the Satellite Advisor permission to use the turn off procedure. Please note that the Satellite Advisor will use his best efforts, but cannot guarantee success. The space station licensee is still held responsible for the space station transmitter(s) by the licensing administration.	
6	Telemetry (published)	
6a	Telemetry frequencies List: → all telemetry frequencies or frequency bands	Frequency: 437[MHz] ITU emission designators: 500HA1A, 16K0F2D,26K0F1D 09K0F1D,18K5F1D,15K0F1D Modulation method: CW, AFSK1200bps, GMSK9600bps, 600~14400bps(variability) Link budgets: 9.37[dB](CW), 3.35[dB](AFSK), 1.10[dB](GMSK) 2.12[dB]~4.33[dB](FSK)

		Please refer to Appendix 2 for the details of the link hudget
	➔ ITU emission designators	Please feler to Appendix 5 for the details of the link budget.
	→ common description of the	
	emission including modulation type	
	AND data rate	
	→ link budgets	
6b	l elemetry formats and equations.	IBD
	Describe telemetry format(s),	project.
	including telemetry equations.	http://sat.aero.cst.nihon-u.ac.jp/nexus/
	NOTE: Final equations must be	In the future, in the pages of "Amateur Radio", it will be release the
	published as soon as available.	telemetry format.
6c	Is the telemetry transmission	To the following URL we have published the HP of the NEXUS
	format commonly used by radio	project.
	amateurs? If not, describe how	http://sat.aero.cst.nihon-u.ac.jp/nexus/
	and where it will be published.	telemetry format.
	Be sure to read: RR 25.2A. Text is	
	included in the paper available at:	
	http://www.iaru.org/satellite/sat-	
	<u>freq-coord.html</u> .	
7	Loursh plans (published)	
70		
7a 7h		TBD
70	Expected Jaunch date	TBD
70	Planned orbit	- Orbit: sun-synchronous polar orbit
14	Include planned orbit apogee	- altitude: 500-600km
	neridee inclination and period	
		The details are being adjusted.
L		
/e	List other amateur satellites	なし
	expected to share the same	
	launch.	

Earth station information:

8	Typical Earth station — transmitti	ng
8a	Describe a typical Earth station used to transmit signals to the planned space station.	Location:Latitude 35:43:30.0000 N_DMS Longitude 140:03:25.2000 E_DMS Altitude 50.0[m] Address: 7-24-1 Narashinodai, Funabashi, Chiba 274-8501, Japan Ground Station Devices: * Antenna (Oscar Hunter WHS32N (MASPRO)) * Radio (IC-910D (ICOM)) * TNC (TNC-505 (Tasco)) * Antenna Control Unit(Satellite Tracker RAC805, Direction controller RC5B-3, Elevation controller ERC5A (Creative Design Corp)) Antenna specification: 144 MHz Band 1 stack antenna Actual gain 10-12[db] VSWR 1.1-1.5 Approximately rate 20.7-22.5[db] Half value rate 33-35[deg] Sustainable power 50[W]
8b	Link power budget.	Command uplink : 27.31[dB]

		T 10.05[1]D]
	Show complete link budgets for all	Transponder : 19.35[dB]
	Earth station transmitting frequencies, except telecommand.	Please refer to Appendix 3 for the link budget of the details.
	-	
9	Typical Earth station — receiving	
9a	Describe a typical Earth station to receive signals from the planned satellite.	Location: Latitude 35:43:30.0000 N_DMS Longitude 140:03:25.2000 E_DMS Altitude 50.0[m] Address: 7-24-1 Narashinodai, Funabashi, Chiba 274-8501, Japan Ground Station Devices: * Antenna (Oscar Hunter WHS32N (MASPRO)) * Radio (IC-910D (ICOM)) * TNC (TNC-555 (Tasco)) * Antenna Control Unit(Satellite Tracker RAC805, Direction controller RC5B-3, Elevation controller ERC5A (Creative Design Corp)) Antenna specification: 430 MHz Band 2 stack antenna Actual gain 12.5-13.4[db] VSWR 1.1-1.5 Approximately rate 16 5-18 3(db)Half value rate 27-29[deg]
9b	Link power budget. Show complete link budgets for all Earth station receiving frequencies.	$ \begin{array}{l} \hline \begin{array}{l} 1 \\ \hline \begin{array}{l} 1 \\ \hline \begin{array}{l} 1 \\ \hline \begin{array}{l} 2 \\ \hline \end{array} \end{array} \end{array} \\ \begin{array}{l} \hline \begin{array}{l} 1 \\ \hline \end{array} \end{array} \\ \begin{array}{l} 1 \\ \hline \end{array} \\ \begin{array}{l} 1 \\ \hline \end{array} \end{array} \\ \begin{array}{l} 1 \\ \end{array} \\ \begin{array}{l} 1 \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} 1 \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} 1 \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} $ \\ \begin{array}{l} 1 \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} 1 \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} 1 \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} 1 \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} 1 \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array}

Additional information:

Do not attach large files. Indicate the URL where the information is available.

Please, supply any additional information that may assist the Satellite Advisor to coordinate your request(s).
 NEXUS project web site

http://sat.aero.cst.nihon-u.ac.jp/nexus/

Certification:

11*	[] The licensee of the planned space station has reviewed all relevant laws, rules, and regulations, and certifies that this request complies with all requirements as understood by IARU to the best of his/her knowledge. <i>We confirm we meet the requirements of RR 1.56 and RR 1.57 in that the proposed satellite will operate without</i>
	 [] The licensee of the planned space station has reviewed all relevant laws, rules, and regulations and disagrees with IARU interpretations of Treaty requirements. The IARU Satellite Advisor is asked to consider the following interpretation. Explanation follows.

* Please tick ONE appropriate box.

Signature:

12		(REQUIRED!)
	宫崎康行	15 December, 2016
	Signature of space station license	e. Date submitted for coordination.

Appendix

Appendix 1	Structure	A.1
Appendix 2	Power budget	A.3
Appendix 3	Link budget	A.5
Appendix 4	Communication diagram	A.13

Appendix 1 Structure

Show a satellite appearance image to FigA.1. In addition, equipment layout of internal satellite is shown in FigA.2

Fig.A 1 Satellite overview

Fig.A 2 equipment layout of internal satellite

Fig.A.1 Drawing of satellite (launch configuration)

Appendix 2 Power budget

1. Power source

In the NEXUS, each two solar cell is attached to all surface. Daylight is available to charge a lithiumion battery and the operation of each components. The specifications of Solar cells and the lithium ion battery are as shown in TableA.1 and TableA.2.

Category	Specification		
Туре	Triple junction (InGaP/InGaAs/Ge)		
Mount type	Body mount		
Number of cells	12cells (2 cells on each sides)		
Arrangement	2 in series and 6 in parallel		
Dimension (1 cell)	40.15mm x 80.15mm		
	(cell area: 30.18cm ²)		
Maximum efficiency	More than 27.5%		
Averaged efficiency of power supply	90%		
from the cells to the components			
Avaraged daytime/round	3897 sec/round		
Averaged energy generation/ round	6386 mWh/round		

Table A.2 Battery

Category	Specification
Туре	Li-ion
Nominal voltage	3.7V
Nominal capacity (each battery)	1880mAh
Number of batteries	4
Arrangement	4 single-cells in parallel
Total capacity	7520mAh
Averaged efficiency of power supply	90%
from the cells to the battery	

2. Daylight and eclipse

Estimate of daylight time and eclipse time are as shown in TableA.3.

1 1 1	Table A.3	estimate of	daylight	and	eclipse
-------	-----------	-------------	----------	-----	---------

Category	Data
Daylight	3897 [sec]
Eclipse	1980 [sec]

3. Power consumption

In the electrical power analysis, We assume the eclipse time for the mode to be used primarily during normal operation. The discharge rate and depth of discharge of the battery was calculated by the operation of the battery only. As a result we confirmed that is within a tolerance. In order to determining the maximum amount of power that can be charged during one daylight, showing the value of power analysis of CW operation (during Daylight) a phase of normal operation. Power consumption at each operation phase is shown in TableA.4, and operation time and discharge current and discharge capacity at each phase are shown in Table A.5.

State	Operation mode	Consumption current [mA]	Consumption Power [mW]	Operation time[s]	Current consumption [mAh]	Power consumption [mWh]
daylight	CW operation (daylight)	219	1008	3897	221	1092
eclipse	CW operation (eclipse)	273	1008	1980	112	555
eclipse	FM downlink of 1200bps	1203	4451	1980	495	2448
eclipse	FM downlink of 9600bps	1205	4459	1980	495	2452
eclipse	QPSK downlink	1086	4019	1980	862	2210
eclipse	Digi-talker and SSTV operation	1182	4375	1980	482	2406
eclipse	CW and transponder operation	1136	4202	1980	564	2311
eclipse	CW and take a picture	1188	4397	1980	465	1970
eclipse	Sensing and antenna deployment	2432	8997	1980	175	919
eclipse	Real time image downlink	1861	6887	600	296	1148

 ${\rm Table}~{\rm A.4}$. Power consumption at each operation phase

As a result , consumption per one battery when the battery 4 Parallel (1 series) are shown in the Table A.5.

State	Operation mode	Consumption current [mA]	Consumption power [mW]	Operation time[s]	Current consumption [mAh]	С	DO D [%]
Daylight	CW operation (daylight)	244	1121	245	1213	-	-
eclipse	CW operation (eclipse)	303	1121	125	540	0.0403	1.66
eclipse	FM downlink of 1200bps	1337	4946	550	2720	0.178	7.31
eclipse	FM downlink of 9600bps	1339	4954	551	2725	0.178	7.32
eclipse	QPSK downlink	1207	4466	958	2456	0.178	4.88
eclipse	Digi-talker and SSTV	1314	4861	536	2673	0.175	7.13
eclipse	CW and transponder operation	1262	4669	626	2568	0.168	8.33
eclipse	CW and take a picture	1320	4885	517	2189	0.176	6.9
eclipse	Sensing and antenna deployment	2702	9996	194	1021	0.359	2.579
eclipse	Real time image downlink	2068	7652	328	1275	0.275	4.366

Table A.5

The maximum amount of power that can be charged in once Daylight is 4546 [mWh]. This is power generation of the solar cell in once daylight, and the amount of CW operation of normal operation phase. This result exceeds the target value, so we determined that can be operated in 4 Parallel.

Appendix 3 Link budget

It shows the link budget result of the transmitter below. From these tables, the link budget has been established. π / 4 shift QPSK transmitter and linear transponder technology demonstration is also possible. This link budget is supposed to altitude 530km.

Table A. 6 Link budget of FM downlink

Downlink 1200bps/AFSK				
Modulation Method		AFSK		
Satellite Antenna	Mono-F	ole Antenna		
Orbit Altitude	H[km]	500		
Earth Radius	R[km]	6378.142		
E.levation Angle	θ _{EL} [deg]	5		
	$\theta_{EL}[rad]$	0.087266463		
Visible Limit Angle	θ[rad]	0.305699756		
	θ[deg]	17.51530582		
Maximun Transmission Distance	D[km]	2077.956733		
Maximun Transmission Speed	c[m]	3.0E+08		
Boltzmann Constant	k[W/Hz·K]	1.38E-23		

Satellite			
Transmission Frequency	f[MHz]	435	
Transmitter Power	P _{TX} [W]	0.8	
	P _{TX} [dBW]	-0.96910013	
Transmitter Feeding Power Loss	L _{FTX} [dB]	-2	
Transmission Antenna Gain	G _{ATX} [dB]	-2	
Effective Isotropically Radiated Power	P _E [dBW]	-4.96910013	
Transmission Antenna Pointing Loss	L _{APt} [dB]	0	

Characteristic Transmission			
Free Space Loss	L₀[dB]	-151.5642873	
Polarized Wave Loss	L _P [dB]	-3	
Atmospheric Absorption Loss	L _A [dB]	0	
Rain Loss	L _{RA} [dB]	0	
Various Loss	L _V [dB]	0	
Total Transmission Loss	L _{pr} [dB]	-154.5642873	

Ground station			
Ground Station Antenna	Cross Yagi	Anntena 2 stack	
ReceivedAntenna Pointing Loss	L _{APr} [dB]	0	
Received Antenna Gain	G _{ARX} [dB]	18.5	
Peceived Feeding Power Loss	L _{FRX} [dB]	-2	
Received reeding rower Loss	L[-]	1.584893192	
Received Signal Power	C[dBW]	-143.0333875	
Antenna Noise Temperature	T _A [K]	300	
Feeding Power Line Noise Temperature	T _F [K]	300	
Receiver Noise Temperature	T _E [K]	300	
Ground Station Temperature	T₀[K]	300	
Noise Easter	nf[-]	2	
Noise Factor	NF[dB]	3.010299957	
Ground Station System Noise Temperature	T _s [K]	600	
Ground Temperature	T _G [K]	300	
Average Temperature	T _m [K]	286	
Sky Noise Temperature Increase	T _{sкy} [K]	0	
Maximun Signal Pass Bandwidth	B[kHz]	16	
Noise Rower	N[W]	1.32E-16	
	N[dB]	-158.7784968	
Noise Power density	N₀[dB]	-2.01E+02	
Receiving Gain	G[dB]	16.5	
Receive G/T	G/T[dB/K]	-11.2815125	

Demodulation Loss	L _D [dB]	2
Internal Ground Station Transmission Loss	L _G [dB]	0
Ground Station Processing Loss	L₀[dB]	2
Rit Data	B _{ps} [bps]	1200
	B _{ps} [dBHz]	30.79181246
Bit Error Rate	Pb	0.000001
Receive C/N _{0 (} Received Power/Noise Power)	C/N₀[dB]	15.75
Request E _b /N ₀	$(E_b/N_0)_{req}[dB]$	10.5
Request C/N ₀	$(C/N_0)_{req}[dB]$	12.5
Margin	M[dB]	3.25

Downlink 9600bps/GMSK		
Modulation Method	GMSK	
Satellite Antenna	Mono-Pole Antenna	
Orbit Altitude	H[km]	500
Earth Radius	R[km]	6378.142
E.levation Angle	θ _{EL} [deg]	5
	θ _{EL} [rad]	0.087266463
Visible Limit Angle	θ[rad]	0.305699756
	θ[deg]	17.51530582
Maximun Transmission Distance	D[km]	2077.956733
Maximun Transmission Speed	c[m]	3.0E+08
Boltzmann Constant	k[W/Hz·K]	1.38E-23

Satellite		
Transmission Frequency	f[MHz]	435
Transmitter Power	P _{TX} [W]	0.8
	P _{TX} [dBW]	-0.96910013
Transmitter Feeding Power Loss	L _{FTX} [dB]	-2
Transmission Antenna Gain	G _{ATX} [dB]	-2
Effective Isotropically Radiated Power	P _E [dBW]	-4.96910013
Transmission Antenna Pointing Loss	L _{APt} [dB]	0

Characteristic Transmission		
Free Space Loss	L₅[dB]	-151.5642873
Polarized Wave Loss	L _P [dB]	-3
Atmospheric Absorption Loss	L _A [dB]	0
Rain Loss	L _{RA} [dB]	0
Various Loss	L _V [dB]	0
Total Transmission Loss	L _{pr} [dB]	-154.5642873

Ground stat	ion	
Ground Station Antenna	Cross Yagi	Anntena 2 stack
ReceivedAntenna Pointing Loss	L _{APr} [dB]	0
Received Antenna Gain	G _{ARX} [dB]	18.5
Received Feeding Power Loss	L _{FRX} [dB]	-2
The certified in country in owner 2035	L[-]	1.584893192
Received Signal Power	C[dBW]	-143.0333875
Antenna Noise Temperature	T _A [K]	300
Feeding Power Line Noise Temperature	T _F [K]	300
Receiver Noise Temperature	T _E [K]	300
Ground Station Temperature	T₀[K]	300
Noise Factor	nf[-]	2
	NF[dB]	3.010299957
Ground Station System Noise Temperature	T _s [K]	600
Ground Temperature	T _G [K]	300
Average Temperature	T _m [K]	286
Sky Noise Temperature Increase	T _{sкy} [K]	0
Maximun Signal Pass Bandwidth	B[kHz]	26
Noise Power	N[W]	2.15E-16
	N[dB]	-156.6699632
Noise Power density	N₀[dB]	-2.01E+02
Receiving Gain	G[dB]	16.5
Receive G/T	G/T[dB/K]	-11.2815125
Demodulation Loss	L _D [dB]	2

Demodulation Loss	L _D [dB]	2
Internal Ground Station Transmission Loss	L _G [dB]	0
Ground Station Processing Loss	L ₀ [dB]	2
Bit Rate	B _{ps} [bps]	9600
Dit Nale	B _{ps} [dBHz]	39.82271233
Bit Error Rate	Pb	0.000001
Receive C/N _{0 (} Received Power/Noise Power)	C/N ₀ [dB]	13.63657569
Request E _b /N ₀	$(E_b/N_0)_{req}[dB]$	10.5
Request C/N ₀	(C/N ₀) _{req} [dB]	12.5
Margin	M[dB]	1.14

Table A. 7 Link budget of CW downlink and FM uplink

Downlink CW			
Modulation Method	CW		
Satellite Antenna	Mono-Po	Mono-Pole Antenna	
Orbit Altitude	H[km]	500	
Earth Radius	R[km]	6378.142	
E.levation Angle	θ_{EL} [deg]	5	
	θ _{EL} [rad]	0.087266463	
Visible Limit Angle	θ[rad]	0.305699756	
	θ[deg]	17.51530582	
Maximun Transmission Distance	D[km]	2077.956733	
Maximun Transmission Speed	c[m]	3.0E+08	
Boltzmann Constant	k[W/Hz·K]	1.38E-23	

Satellite		
Transmission Frequency	f[MHz]	435
Transmitter Power	P _{TX} [W]	0.1
	P _{TX} [dBW]	-10
Transmitter Feeding Power Loss	L _{FTX} [dB]	-2
Transmission Antenna Gain	G _{ATX} [dB]	-2
Effective Isotropically Radiated Power	P _E [dBW]	-14
Transmission Antenna Pointing Loss	L _{APt} [dB]	0

Characteristic Transmission		
Free Space Loss	L _d [dB]	-151.5642873
Polarized Wave Loss	L _P [dB]	-3
Atmospheric Absorption Loss	L _A [dB]	0
Rain Loss	L _{RA} [dB]	0
Various Loss	L _V [dB]	0
Total Transmission Loss	L _{pr} [dB]	-154.5642873

Ground station		
Ground Station Antenna	Cross Yagi	Anntena 2 stack
ReceivedAntenna Pointing Loss	L _{APr} [dB]	0
Received Antenna Gain	G _{ARX} [dB]	18.5
Received Feeding Power Loss	L _{FRX} [dB]	-2
Received reeding rower Loss	L[-]	1.584893192
Received Signal Power	C[dBW]	-152.0642873
Antenna Noise Temperature	T _A [K]	300
Feeding Power Line Noise Temperature	T _F [K]	300
Receiver Noise Temperature	T _E [K]	300
Ground Station Temperature	T₀[K]	300
Noise Factor	nf[-]	2
	NF[dB]	3.010299957
Ground Station System Noise Temperature	T _s [K]	600
Ground Temperature	T _G [K]	300
Average Temperature	T _m [K]	286
Sky Noise Temperature Increase	T _{SKY} [K]	0
Maximun Signal Pass Bandwidth	B[kHz]	0.5
	N[VV]	4.14E-18
Noise Power	N[dB]	-1.74E+02
Noise Power density	N₀[dB]	-2.01E+02
Receiving Gain	G[dB]	16.5
Receive G/T	G/T[dB/K]	-11.2815125

Demodulation Loss	L₀[dB]	2
Internal Ground Station Transmission Loss	L _G [dB]	0
Ground Station Processing Loss	L₀[dB]	2
Bit Rate	B _{ps} [bps]	25
	B _{ps} [dBHz]	13.97940009
Bit Error Rate	P₀	0.000001
Receive C/N ₀ (Received Power/Noise Power)	C/N ₀ [dB]	2.18E+01
Request E _b /N ₀	$(E_b/N_0)_{req}[dB]$	10.5
Request C/N ₀	$(C/N_0)_{req}[dB]$	12.5
Margin	M[dB]	23.24

Uplink 1200bps		
Modulation Method	AFSK	
Satellite Antenna	Cross Yagi Anntena 2 stack	
Orbit Altitude	H[km]	500
Earth Radius	R[km]	6378.142
E.levation Angle	$\theta_{EL}[deg]$	5
	$\theta_{EL}[rad]$	0.087266463
Visible Limit Angle	θ[rad]	0.305699756
	θ[deg]	17.51530582
Maximun Transmission Distance	D[km]	2077.956733
Maximun Transmission Speed	c[m]	3.0E+08
Boltzmann Constant	k[W/Hz·K]	1.38E-23

Ground Station		
Transmission Frequency	f[MHz]	145
Transmitter Power	P _{TX} [W]	50
	P _{TX} [dBW]	16.98970004
Transmitter Feeding Power Loss	L _{FTX} [dB]	-2
Transmission Antenna Gain	G _{ATX} [dB]	13
Effective Isotropically Radiated Power	P _E [dBW]	27.98970004
Transmission Antenna Pointing Loss	L _{APt} [dB]	0

Characteristic Transmission		
Free Space Loss	L₀[dB]	-142.0218622
Polarized Wave Loss	L _P [dB]	-3
Atmospheric Absorption Loss	L _A [dB]	0
Rain Loss	L _{RA} [dB]	0
Various Loss	L _V [dB]	0
Total Transmission Loss	L _{pr} [dB]	-145.0218622

Satellite		
Ground Station Antenna	Mono-Pole Antenna	
ReceivedAntenna Pointing Loss	L _{APr} [dB]	0
Received Antenna Gain	G _{ARX} [dB]	0
Received Feeding Power Loss	L _{FRX} [dB]	-2
Received Teeding Tower Loss	L[-]	1.584893192
Received Signal Power	C[dBW]	-119.0321622
Antenna Noise Temperature	T _A [K]	300
Feeding Power Line Noise Temperature	T _F [K]	300
Receiver Noise Temperature	T _E [K]	300
Ground Station Temperature	T₀[K]	300
Noise Factor	nf[-]	2
	NF[dB]	3.010299957
Ground Station System Noise Temperature	T _s [K]	600
Ground Temperature	T _G [K]	300
Average Temperature	T _m [K]	286
Sky Noise Temperature Increase	T _{SKY} [K]	0
Maximun Signal Pass Bandwidth	B[kHz]	16
Noise Power	N[W]	1.32E-16
	N[dB]	-1.59E+02
Noise Power density	N₀[dB]	-2.01E+02
Receiving Gain	G[dB]	-2
Receive G/T	G/T[dB/K]	-29.7815125

Demodulation Loss	L _D [dB]	2
Internal Ground Station Transmission Loss	L _G [dB]	0
Ground Station Processing Loss	L₀[dB]	2
Bit Rate	B _{ps} [bps]	1200
	B _{ps} [dBHz]	30.79181246
Bit Error Rate	Pb	0.000001
Receive C/N _{0 (} Received Power/Noise Power)	C/N ₀ [dB]	3.97E+01
Request E _b /N ₀	$(E_b/N_0)_{req}[dB]$	10.5
Request C/N ₀	$(C/N_0)_{req}[dB]$	12.5
Margin	M[dB]	27.25

Table A. 8 Link budget of transponder

Transponder_Uplink		
Modulation Method		
Satellite Antenna	Cross Yagi	Anntena 2 stack
Orbit Altitude	H[km]	500
Earth Radius	R[km]	6378.142
E.levation Angle	θ _{EL} [deg]	15
	$\theta_{EL}[rad]$	0.261799388
Visible Limit Angle	θ[rad]	0.198974269
	θ[deg]	11.40038587
Maximun Transmission Distance	D[km]	1407.52077
Maximun Transmission Speed	c[m]	3.0E+08
Boltzmann Constant	k[W/Hz·K]	1.38E-23

Ground Station		
Transmission Frequency	f[MHz]	145
Transmitter Power	P⊤x[W]	10
	P _{⊤x} [dBW]	10
Transmitter Feeding Power Loss	L _{FTX} [dB]	-2
Transmission Antenna Gain	G _{ATX} [dB]	13
Effective Isotropically Radiated Power	P _E [dBW]	21
Transmission Antenna Pointing Loss	L _{APt} [dB]	0

Characteristic Transmission		
Free Space Loss	L₀[dB]	-138.6382285
Polarized Wave Loss	L _P [dB]	-3
Atmospheric Absorption Loss	L _A [dB]	0
Rain Loss	L _{RA} [dB]	0
Various Loss	L _V [dB]	0
Total Transmission Loss	L _{pr} [dB]	-141.6382285

Satellite		
Ground Station Antenna	Mono-Po	ole Antenna
ReceivedAntenna Pointing Loss	L _{APr} [dB]	0
Received Antenna Gain	G _{ARX} [dB]	0
Received Feeding Power Loss	L _{FRX} [dB]	-2
Received Feeding Fower Loss	L[-]	1.584893192
Received Signal Power	C[dBW]	-122.6382285
Antenna Noise Temperature	T _A [K]	300
Feeding Power Line Noise Temperature	T _F [K]	300
Receiver Noise Temperature	T _E [K]	300
Ground Station Temperature	T₀[K]	300
Noise Factor	nf[-]	2
	NF[dB]	3.010299957
Ground Station System Noise Temperature	T _s [K]	600
Ground Temperature	T _G [K]	300
Average Temperature	T _m [K]	286
Sky Noise Temperature Increase	Т _{sкy} [K]	0
Maximun Signal Pass Bandwidth	B[kHz]	20
Noise Power	N[W]	1.66E-16
	N[dB]	-157.8093967
Noise Power density	N₀[dB]	-2.01E+02
Receiving Gain	G[dB]	-2
Receive G/T	G/T[dB/K]	-29.7815125

Demodulation Loss	L _D [dB]	2
Internal Ground Station Transmission Loss	L _G [dB]	0
Ground Station Processing Loss	L₀[dB]	2
Bit Rate	B _{ps} [bps]	1200
	B _{ps} [dBHz]	-
Bit Error Rate	Pb	-
Receive C/N ₀ (Received Power/Noise Power)	C/N₀[dB]	3.52E+01
Request E _b /N ₀	$(E_b/N_0)_{req}[dB]$	10.5
Request C/N ₀	$(C/N_0)_{req}[dB]$	12.5
Margin	M[dB]	22.67

Transponder_Downlink		
Modulation Method		
Satellite Antenna	Mono-Pole Antenna	
Orbit Altitude	H[km]	500
Earth Radius	R[km]	6378.142
E.levation Angle	θ _{EL} [deg]	15
	θ _{EL} [rad]	0.261799388
Visible Limit Angle	θ[rad]	0.198974269
	θ[deg]	11.40038587
Maximun Transmission Distance	D[km]	1407.52077
Maximun Transmission Speed	c[m]	3.0E+08
Boltzmann Constant	k[W/Hz·K]	1.38E-23

Satellite		
Transmission Frequency	f[MHz]	435
Transmitter Power	P _{TX} [W]	12
	P⊤x[dBW]	10.79181246
Transmitter Feeding Power Loss	L _{FTX} [dB]	-2
Transmission Antenna Gain	G _{ATX} [dB]	-2
Effective Isotropically Radiated Power	P _E [dBW]	6.79181246
Transmission Antenna Pointing Loss	L _{APt} [dB]	0

Characteristic Transmission		
Free Space Loss	L₀[dB]	-148.1806536
Polarized Wave Loss	L _P [dB]	-3
Atmospheric Absorption Loss	L _A [dB]	0
Rain Loss	L _{RA} [dB]	0
Various Loss	L _V [dB]	0
Total Transmission Loss	L _{pr} [dB]	-151.1806536

Ground Station		
Ground Station Antenna	Cross Yagi Anntena 2 stack	
ReceivedAntenna Pointing Loss	L _{APr} [dB]	0
Received Antenna Gain	G _{ARX} [dB]	18.5
Received Feeding Power Loss	L _{FRX} [dB]	-2
Neceived recurry rower Loss	L[-]	1.584893192
Received Signal Power	C[dBW]	-127.8888411
Antenna Noise Temperature	T _A [K]	300
Feeding Power Line Noise Temperature	T _F [K]	300
Receiver Noise Temperature	T _E [K]	300
Ground Station Temperature	T₀[K]	300
Noise Eactor	nf[-]	2
Noise Factor	NF[dB]	3.010299957
Ground Station System Noise Temperature	T _s [K]	600
Ground Temperature	T _G [K]	300
Average Temperature	T _m [K]	286
Sky Noise Temperature Increase	Т _{sкү} [K]	0
Maximun Signal Pass Bandwidth	B[kHz]	20
Noise Rower	N[W]	1.66E-16
Noise Power	N[dB]	-1.58E+02
Noise Power density	N ₀ [dB]	-2.01E+02
Receiving Gain	G[dB]	16.5
Receive G/T	G/T[dB/K]	-11.2815125

Demodulation Loss	L₀[dB]	2
Internal Ground Station Transmission Loss	L _G [dB]	0
Ground Station Processing Loss	L₀[dB]	2
Bit Rate	B _{ps} [bps]	-
	B _{ps} [dBHz]	-
Bit Error Rate	Pb	0.000001
Receive C/N _{0 (} Received Power/Noise Power)	C/N₀[dB]	2.99E+01
Request E _b /N ₀	(Eb/N0)req[dB]	10.5
Request C/N ₀	$(C/N_0)_{req}[dB]$	12.5
Margin	M[dB]	17.42

Table A. 9 Link budget of $\pi/4$ shift QPSK downlink

QPSK Transmitter(QPSK/38400bps)			
Modulation Method	π/4 shift QF	π/4 shift QPSK(G1D)	
Satellite Antenna	Mono-Pole	Mono-Pole Antenna	
Orbit Altitude	H[km]	500	
Earth Radius	R[km]	6378.142	
E.levation Angle	$\theta_{EL}[deg]$	15	
	$\theta_{EL}[rad]$	0.262	
Visible Limit Angle	θ[rad]	0.199	
	θ[deg]	11.400	
Maximun Transmission Distance	D[km]	1407.521	
Maximun Transmission Speed	c[m]	3.0E+08	
Boltzmann Constant	k[W/Hz·K]	1.38E-23	

Satellite		
Transmission Frequency	f[MHz]	435
Transmitter Power	P _{TX} [W]	0.4
	P _{TX} [dBW]	-3.98
Transmitter Feeding Power Loss	L _{FTX} [dB]	-2
Transmission Antenna Gain	G _{ATX} [dB]	-2
Effective Isotropically Radiated Power	P _E [dBW]	-7.98
Transmission Antenna Pointing Loss	L _{APt} [dB]	0

Characteristic Transmission		
Free Space Loss	L _d [dB]	-148.18
Polarized Wave Loss	L _P [dB]	-3
Atmospheric Absorption Loss	L _A [dB]	0
Rain Loss	L _{RA} [dB]	0
Various Loss	L _V [dB]	0
Total Transmission Loss	L _{pr} [dB]	-151.18

Ground Station		
Ground Station Antenna	Cross Yagi An	ntena 2 stack
ReceivedAntenna Pointing Loss	L _{APr} [dB]	0
Received Antenna Gain	G _{ARX} [dB]	20
Received Feeding Power Loss	L _{FRX} [dB]	-2
Received reeding Fower Loss	L[-]	1.58
Received Signal Power	C[dBW]	-141.16
Antenna Noise Temperature	T _A [K]	300
Feeding Power Line Noise Temperature	T _F [K]	300
Receiver Noise Temperature	T _E [K]	300
Ground Station Temperature	T₀[K]	300
Noise Easter	nf[-]	2
	NF[dB]	3.01
Ground Station System Noise Temperature	T _s [K]	600
Ground Temperature	T _G [K]	300
Average Temperature	T _m [K]	286
Sky Noise Temperature Increase	T _{sкy} [K]	0
Maximun Signal Pass Bandwidth	B[kHz]	20
Noise Rower	N[W]	1.66E-16
Noise Fower	N[dBW]	-1.58E+02
Noise Power density	N₀[dBW]	-2.01E+02
Receiving Gain	G[dB]	18
Receive G/T	G/T[dB/K]	-9.8

Demodulation Loss	L _D [dB]	1
Internal Ground Station Transmission Loss	L _G [dB]	0
Ground Station Processing Loss	L₀[dB]	1
Bit Rate	B _{ps} [bps]	19,200
	$B_{ps}[dBHz]$	42.83
Bit Error Rate	Pb	1.0E-06
Receive C/N _{0 (} Received Power/Noise Power)	C/N ₀ [dB]	16.65
Request E _b /N ₀	$(E_b/N_0)_{req}[dB]$	10.5
Request C/N ₀	$(C/N_0)_{req}[dB]$	12.50
Margin	M[dB]	4.15

Table A. 10 FM downlink (GMSK and AFSK)

FM Data Transmitter Downlink(GMSK/9600bps)			
Modulation Method	GMSK	GMSK(F1D)	
Satellite Antenna	Mono-Pol	Mono-Pole Antenna	
Orbit Altitude	H[km]	500	
Earth Radius	R[km]	6378.142	
E.levation Angle	$\theta_{EL}[deg]$	5	
	θ _{EL} [rad]	0.087	
Visible Limit Angle	θ[rad]	0.306	
	θ[deg]	17.515	
Maximun Transmission Distance	D[km]	2077.957	
Maximun Transmission Speed	c[m]	3.0E+08	
Boltzmann Constant	k[W/Hz·K]	1.38E-23	

Satellite		
Transmission Frequency	f[MHz]	435
Transmitter Power	P _{TX} [W]	0.4
	P _{TX} [dBW]	-3.979
Transmitter Feeding Power Loss	L _{FTX} [dB]	-2
Transmission Antenna Gain	G _{ATX} [dB]	-2
Effective Isotropically Radiated Power	P _E [dBW]	-7.98
Transmission Antenna Pointing Loss	L _{APt} [dB]	0

Characteristic Transmission		
Free Space Loss	L _d [dB]	-151.56
Polarized Wave Loss	L _P [dB]	-3
Atmospheric Absorption Loss	L _A [dB]	0
Rain Loss	L _{RA} [dB]	0
Various Loss	L _V [dB]	0
Total Transmission Loss	L _{pr} [dB]	-154.56

Ground Station		
Ground Station Antenna	Cross Yagi An	ntena 2 stack
ReceivedAntenna Pointing Loss	L _{APr} [dB]	0
Received Antenna Gain	G _{ARX} [dB]	20
Received Feeding Power Loss	L _{FRX} [dB]	-2
	L[-]	1.58
Received Signal Power	C[dBW]	-144.54
Antenna Noise Temperature	T _A [K]	300
Feeding Power Line Noise Temperature	T _F [K]	300
Receiver Noise Temperature	T _E [K]	300
Ground Station Temperature	T₀[K]	300
Noise Factor	nf[-]	2
	NF[dB]	3.01
Ground Station System Noise Temperature	T _s [K]	600
Ground Temperature	T _G [K]	300
Average Temperature	T _m [K]	286
Sky Noise Temperature Increase	Т _{sкy} [K]	0
Maximun Signal Pass Bandwidth	B[kHz]	15
Noise Rower	N[W]	1.24E-16
	N[dBW]	-1.59E+02
Noise Power density	N ₀ [dBW]	-2.01E+02
Receiving Gain	G[dB]	18
Receive G/T	G/T[dB/K]	-9.8

Demodulation Loss	L _D [dB]	1
Internal Ground Station Transmission Loss	L _G [dB]	0
Ground Station Processing Loss	L ₀ [dB]	1
Bit Rate	B _{ps} [bps]	9600
	B _{ps} [dBHz]	39.82
Bit Error Rate	P _b	1.E-06
Receive C/N _{0 (} Received Power/Noise Power)	C/N ₀ [dB]	14.52
Request E _b /N ₀	$(E_b/N_0)_{req}[dB]$	10.5
Request C/N ₀	$(C/N_0)_{req}[dB]$	12.50
Margin	M[dB]	2.02

FM Data Transmitter Downlink(AFSK/1200bps)			
Modulation Method	AFSK		
Satellite Antenna	Mono-Pole Antenna		
Orbit Altitude	H[km] 50		
Earth Radius	R[km]	6378.142	
E.levation Angle	θ _{EL} [deg]	5	
	θ _{EL} [rad]	0.087	
Visible Limit Angle	θ[rad]	0.306	
	θ[deg]	17.515	
Maximun Transmission Distance	D[km]	2077.957	
Maximun Transmission Speed	c[m]	3.0E+08	
Boltzmann Constant	k[W/Hz·K]	1.38E-23	

Satellite		
Transmission Frequency	f[MHz]	435
Transmitter Power	P _{TX} [W]	0.4
	P _{TX} [dBW]	-3.98
Transmitter Feeding Power Loss	L _{FTX} [dB]	-2
Transmission Antenna Gain	G _{ATX} [dB]	-2
Effective Isotropically Radiated Power	P _E [dBW]	-7.98
Transmission Antenna Pointing Loss	L _{APt} [dB]	0

Characteristic Transmission			
Free Space Loss	L _d [dB]	-151.56	
Polarized Wave Loss	L _P [dB]	-3	
Atmospheric Absorption Loss	L _A [dB]	0	
Rain Loss	L _{RA} [dB]	0	
Various Loss	L _V [dB]	0	
Total Transmission Loss	L _{pr} [dB]	-154.56	

Ground Station			
Ground Station Antenna	Cross Yagi Anntena 2 stack		
ReceivedAntenna Pointing Loss	L _{APr} [dB]	0	
Received Antenna Gain	G _{ARX} [dB]	20	
Passived Fooding Power Loop	L _{FRX} [dB]	-2	
Received Feeding Fower Loss	L[-]	1.58	
Received Signal Power	C[dBW]	-144.54	
Antenna Noise Temperature	T _A [K]	300	
Feeding Power Line Noise Temperature	T _F [K]	300	
Receiver Noise Temperature	T _E [K]	300	
Ground Station Temperature	T₀[K]	300	
Noise Factor	nf[-]	2	
NOISE FACIOI	NF[dB]	3.01	
Ground Station System Noise Temperature	T _s [K]	600	
Ground Temperature	T _G [K]	300	
Average Temperature	T _m [K]	286	
Sky Noise Temperature Increase	Т _{sкү} [K]	0	
Maximun Signal Pass Bandwidth	B[kHz]	9	
Naisa Power	N[W]	7.45E-17	
	N[dBW]	-1.61E+02	
Noise Power density	N ₀ [dBW]	-2.01E+02	
Receiving Gain	G[dB]	18	
Receive G/T	G/T[dB/K]	-9.8	

Demodulation Loss	L _D [dB]	1
Internal Ground Station Transmission Loss	L _G [dB]	0
Ground Station Processing Loss	L ₀ [dB]	1
Rit Pata	B _{ps} [bps]	1200
	B _{ps} [dBHz]	30.79
Bit Error Rate	P _b	0.000001
Receive C/N _{0 (} Received Power/Noise Power)	C/N₀[dB]	16.73
Request E _b /N ₀	$(E_b/N_0)_{req}[dB]$	10.5
Request C/N ₀	(C/N ₀) _{req} [dB]	12.50
Margin	M[dB]	4.23

Table A. 11	FM downlink	(FSK 60)	$00 \mathrm{bps} \sim 9600 \mathrm{bps}$)
-------------	-------------	----------	--	---

FM Data Transmitter Downlink(FSK/9600bps)			
Modulation Method	FSK(F1D)		
Satellite Antenna	Mono-Pole Antenna		
Orbit Altitude	H[km] 50		
Earth Radius	R[km]	6378.142	
E.levation Angle	θ _{EL} [deg]	15	
	θ _{EL} [rad]	0.262	
Visible Limit Angle	θ[rad]	0.199	
	θ[deg]	11.400	
Maximun Transmission Distance	D[km]	1407.521	
Maximun Transmission Speed	c[m]	3.0E+08	
Boltzmann Constant	k[W/Hz·K]	1.38E-23	

Satellite			
Transmission Frequency	f[MHz]	435	
Transmitter Power	P _{TX} [W]	0.4	
	P _{TX} [dBW]	-3.98	
Transmitter Feeding Power Loss	L _{FTX} [dB]	-2	
Transmission Antenna Gain	G _{ATX} [dB]	-2	
Effective Isotropically Radiated Power	P _E [dBW]	-7.98	
Transmission Antenna Pointing Loss	L _{APt} [dB]	0	

Characteristic Transmission		
Free Space Loss	L₀[dB]	-148.18
Polarized Wave Loss	L _P [dB]	-3
Atmospheric Absorption Loss	L _A [dB]	0
Rain Loss	L _{RA} [dB]	0
Various Loss	L _V [dB]	0
Total Transmission Loss	L _{pr} [dB]	-151.18

Ground Station			
Ground Station Antenna	Cross Yagi Ar	Cross Yagi Anntena 2 stack	
ReceivedAntenna Pointing Loss	L _{APr} [dB]	0	
Received Antenna Gain	G _{ARX} [dB]	20	
Received Feeding Power Loss	L _{FRX} [dB]	-2	
Received recuiring rower Loss	L[-]	1.58	
Received Signal Power	C[dBW]	-141.16	
Antenna Noise Temperature	T _A [K]	300	
Feeding Power Line Noise Temperature	T _F [K]	300	
Receiver Noise Temperature	T _E [K]	300	
Ground Station Temperature	T₀[K]	300	
Noise Factor	nf[-]	2	
	NF[dB]	3.01	
Ground Station System Noise Temperature	T _s [K]	600	
Ground Temperature	T _G [K]	300	
Average Temperature	T _m [K]	286	
Sky Noise Temperature Increase	Т _{sкy} [K]	0	
Maximun Signal Pass Bandwidth	B[kHz]	18.5	
Noise Rower	N[W]	1.53E-16	
	N[dBW]	-1.58E+02	
Noise Power density	N₀[dBW]	-2.01E+02	
Receiving Gain	G[dB]	18	
Receive G/T	G/T[dB/K]	-9.8	

Demodulation Loss	L _D [dB]	1
Internal Ground Station Transmission Loss	L _G [dB]	0
Ground Station Processing Loss	L₀[dB]	1
Bit Bate	B _{ps} [bps]	9600
	B _{ps} [dBHz]	39.82
Bit Error Rate	P _b	1.E-05
Receive C/N _{0 (} Received Power/Noise Power)	C/N ₀ [dB]	16.99
Request E _b /N ₀	$(E_b/N_0)_{req}[dB]$	11.9
Request C/N ₀	$(C/N_0)_{req}[dB]$	13.90
Margin	M[dB]	3.09

FM Data Transmitter Downlink(FSK/600bps)			
Modulation Method	FSK(F1D)		
Satellite Antenna	Mono-Pole Antenna		
Orbit Altitude	H[km]	500	
Earth Radius	R[km]	6378.142	
E.levation Angle	θ _{EL} [deg]	5	
	$\theta_{EL}[rad]$	0.087	
Visible Limit Angle	θ[rad]	0.306	
	θ[deg]	17.515	
Maximun Transmission Distance	D[km]	2077.957	
Maximun Transmission Speed	c[m]	3.0E+08	
Boltzmann Constant	k[W/Hz·K]	1.38E-23	

Satellite		
Transmission Frequency	f[MHz]	435
Transmitter Power	P _{TX} [W]	0.4
	P _{TX} [dBW]	-3.98
Transmitter Feeding Power Loss	L _{FTX} [dB]	-2
Transmission Antenna Gain	G _{ATX} [dB]	-2
Effective Isotropically Radiated Power	P _E [dBW]	-7.98
Transmission Antenna Pointing Loss	L _{APt} [dB]	0

Characteristic Transmission		
Free Space Loss	L₄[dB]	-151.56
Polarized Wave Loss	L _P [dB]	-3
Atmospheric Absorption Loss	L _A [dB]	0
Rain Loss	L _{RA} [dB]	0
Various Loss	L _∨ [dB]	0
Total Transmission Loss	L _{pr} [dB]	-154.56

Ground Station		
Ground Station Antenna	Cross Yagi Anntena 2 stack	
ReceivedAntenna Pointing Loss	L _{APr} [dB]	0
Received Antenna Gain	G _{ARX} [dB]	20
Received Feeding Power Loss	L _{FRX} [dB]	-2
Received Feeding Fower Loss	L[-]	1.58
Received Signal Power	C[dBW]	-144.54
Antenna Noise Temperature	T _A [K]	300
Feeding Power Line Noise Temperature	T _F [K]	300
Receiver Noise Temperature	T _E [K]	300
Ground Station Temperature	T₀[K]	300
Noise Eactor	nf[-]	2
Noise Factor	NF[dB]	3.01
Ground Station System Noise Temperature	T _s [K]	600
Ground Temperature	T _G [K]	300
Average Temperature	T _m [K]	286
Sky Noise Temperature Increase	T _{SKY} [K]	0
Maximun Signal Pass Bandwidth	B[kHz]	9
Noise Power	N[W]	7.45E-17
Noise Fower	N[dBW]	-1.61E+02
Noise Power density	N₀[dBW]	-2.01E+02
Receiving Gain	G[dB]	18
Receive G/T	G/T[dB/K]	-9.8

Demodulation Loss	L _D [dB]	1
Internal Ground Station Transmission Loss	L _G [dB]	0
Ground Station Processing Loss	L₀[dB]	1
Bit Rate	B _{ps} [bps]	600
	B _{ps} [dBHz]	27.78
Bit Error Rate	P _b	1.E-05
Receive C/N _{0 (} Received Power/Noise Power)	C/N ₀ [dB]	16.73
Request E _b /N ₀	$(E_b/N_0)_{req}[dB]$	11.9
Request C/N ₀	$(C/N_0)_{req}[dB]$	13.90
Margin	M[dB]	2.83

Table A. 12 FM Uplink(FSK)

FM Data Transmitter Uplink 1000bps		
Modulation Method	FSK(F1D)	
Satellite Antenna	Cross Yagi Anntena 2 stack	
Orbit Altitude	H[km]	500
Earth Radius	R[km]	6378.142
E.levation Angle	$\theta_{EL}[deg]$	5
	$\theta_{EL}[rad]$	0.087
Visible Limit Angle	θ[rad]	0.306
	θ[deg]	17.515
Maximun Transmission Distance	D[km]	2077.957
Maximun Transmission Speed	c[m]	3.0E+08
Boltzmann Constant	k[W/Hz·K]	1.38E-23

Ground Station		
Transmission Frequency	f[MHz]	145
Transmitter Power	P _{TX} [W]	50
	P _{TX} [dBW]	16.99
Transmitter Feeding Power Loss	L _{FTX} [dB]	-2
Transmission Antenna Gain	G _{ATX} [dB]	13
Effective Isotropically Radiated Power	P _E [dBW]	27.99
Transmission Antenna Pointing Loss	L _{APt} [dB]	0

Characteristic Transmission		
Free Space Loss	L₀[dB]	-142.02
Polarized Wave Loss	L _P [dB]	-3
Atmospheric Absorption Loss	L _A [dB]	0
Rain Loss	L _{RA} [dB]	0
Various Loss	L _V [dB]	0
Total Transmission Loss	L _{pr} [dB]	-145.02

Satellite		
Ground Station Antenna	Mono-Pole Antenna	
ReceivedAntenna Pointing Loss	L _{APr} [dB]	0
Received Antenna Gain	G _{ARX} [dB]	0
Penning Fooding Power Loop	L _{FRX} [dB]	-2
Received Feeding Fower 2033	L[-]	1.58
Received Signal Power	C[dB]	-119.03
Antenna Noise Temperature	T _A [K]	300
Feeding Power Line Noise Temperature	T _F [K]	300
Receiver Noise Temperature	T _E [K]	300
Ground Station Temperature	T₀[K]	300
Noise Factor	nf[-]	5
	NF[dB]	6.99
Ground Station System Noise Temperature	T _s [K]	1500
Ground Temperature	T _G [K]	300
Average Temperature	T _m [K]	286
Sky Noise Temperature Increase	T _{sкy} [K]	0
Maximun Signal Pass Bandwidth	B[kHz]	5
Noise Power	N[W]	1.04E-16
Noise Fower	N[dB]	-1.60E+02
Noise Power density	N₀[dB]	-1.97E+02
Receiving Gain	G[dB]	-2
Receive G/T	G/T[dB/K]	-33.8

Demodulation Loss	L _D [dB]	1
Internal Ground Station Transmission Loss	L _G [dB]	0
Ground Station Processing Loss	L₀[dB]	1
Bit Rate	B _{ps} [bps]	1000
	$B_{ps}[dBHz]$	30.00
Bit Error Rate	Pb	0.000001
Receive C/N _{0 (} Received Power/Noise Power)	C/N ₀ [dB]	40.82
Request E _b /N ₀	$(E_b/N_0)_{req}[dB]$	10.5
Request C/N ₀	$(C/N_0)_{req}[dB]$	11.86
Margin	M[dB]	28.96

This satellite is communicated by some amateur radio station. The communication diagram is shown in

 $FigA.2\ communication\ dyagram$