Appendix

Appendix 1	Structure	A.1
Appendix 2	Power budget	A.3
Appendix 3	Link budget	A.5
Appendix 4	Communication diagram	A.13

Appendix 1 Structure

The satellite overview is shown in Fig.A.1. The equipment layout of internal satellite is shown in Fig.A.2. The drawing of satellite is shown in Fig.A.3.

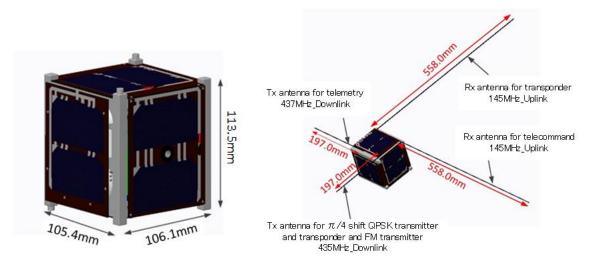
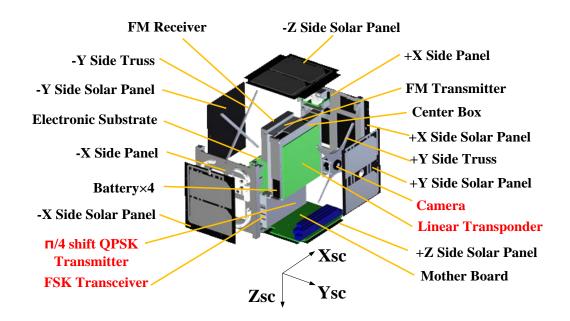



Fig.A.1 Satellite overview

 ${\bf Fig. A.1\ equipment\ layout\ of\ internal\ satellite}$

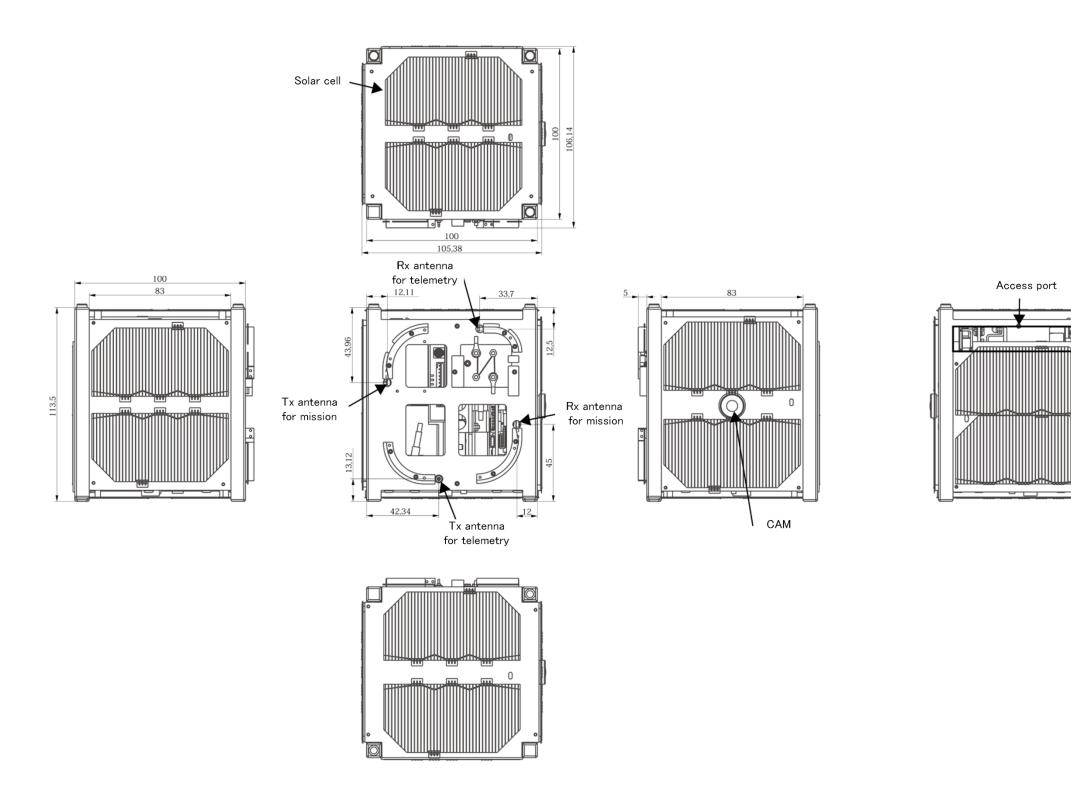


Fig.A.3 Drawing of satellite (launch configuration)

Appendix 2 Power budget

1. Power source

In the NEXUS, each two solar cell is attached to all surface. Daylight is available to charge a lithiumion battery and the operation of each components. The specifications of Solar cells and the lithium ion battery are as shown in TableA.1 and TableA.2.

Table A.1 Solar cell

Category	Specification	
Туре	Triple junction (InGaP/InGaAs/Ge)	
Mount type	Body mount	
Number of cells	12cells (2 cells on each sides)	
Arrangement	2 in series and 6 in parallel	
Dimension (1 cell)	40.15mm x 80.15mm	
	(cell area: 30.18cm²)	
Maximum efficiency	More than 27.5%	
Averaged efficiency of power supply	90%	
from the cells to the components		
Avaraged daytime/round	3897 sec/round	
Averaged energy generation/ round	6386 mWh/round	

Table A.2 Battery

Category	Specification	
Туре	Li-ion	
Nominal voltage	3.7V	
Nominal capacity (each battery)	1880mAh	
Number of batteries	4	
Arrangement	4 single-cells in parallel	
Total capacity	7520mAh	
Averaged efficiency of power supply	90%	
from the cells to the battery		

2. Daylight and eclipse

Estimate of daylight time and eclipse time are as shown in TableA.3.

Table A.3 estimate of daylight and eclipse

	, , , , , , , , , , , , , , , , , , , ,
Category	Data
Daylight	3897 [sec]
Eclipse	1980 [sec]

3. Power consumption

In the electrical power analysis, We assume the eclipse time for the mode to be used primarily during normal operation. The discharge rate and depth of discharge of the battery was calculated by the operation of the battery only. As a result we confirmed that is within a tolerance. In order to determining the maximum amount of power that can be charged during one daylight, showing the value of power analysis of CW operation (during Daylight) a phase of normal operation. Power consumption at each operation phase is shown in TableA.4, and operation time and discharge current and discharge capacity at each phase are shown in Table A.5.

 $\operatorname{Table}\, A.4$. Power consumption at each operation phase

State	Operation mode	Consumption current [mA]	Consumption Power [mW]	Operation time[s]	Current consumption [mAh]	Power consumption [mWh]
daylight	CW operation (daylight)	219	1008	3897	221	1092
eclipse	CW operation (eclipse)	273	1008	1980	112	555
eclipse	FM downlink of 1200bps	1203	4451	1980	495	2448
eclipse	FM downlink of 9600bps	1205	4459	1980	495	2452
eclipse	QPSK downlink	1086	4019	1980	862	2210
eclipse	Digi-talker and SSTV operation	1182	4375	1980	482	2406
eclipse	CW and transponder operation	1136	4202	1980	564	2311
eclipse	CW and take a picture	1188	4397	1980	465	1970
eclipse	Sensing and antenna deployment	2432	8997	1980	175	919
eclipse	Real time image downlink	1861	6887	600	296	1148

As a result , consumption per one battery when the battery 4 Parallel (1 series) are shown in the Table A.5.

Table A.5

State	Operation mode	Consumption current [mA]	Consumption power [mW]	Operation time[s]	Current consumption [mAh]	С	DO D [%]
Daylight	CW operation (daylight)	244	1121	245	1213	-	-
eclipse	CW operation (eclipse)	303	1121	125	540	0.0403	1.66
eclipse	FM downlink of 1200bps	1337	4946	550	2720	0.178	7.31
eclipse	FM downlink of 9600bps	1339	4954	551	2725	0.178	7.32
eclipse	QPSK downlink	1207	4466	958	2456	0.178	4.88
eclipse	Digi-talker and SSTV	1314	4861	536	2673	0.175	7.13
eclipse	CW and transponder operation	1262	4669	626	2568	0.168	8.33
eclipse	CW and take a picture	1320	4885	517	2189	0.176	6.9
eclipse	Sensing and antenna deployment	2702	9996	194	1021	0.359	2.579
eclipse	Real time image downlink	2068	7652	328	1275	0.275	4.366

The maximum amount of power that can be charged in once Daylight is 4546 [mWh]. This is power generation of the solar cell in once daylight, and the amount of CW operation of normal operation phase. This result exceeds the target value, so we determined that can be operated in 4 Parallel.

Appendix 3 Link budget

It shows the link budget result of the transmitter below. From these tables, the link budget has been established.

Table A. 6 Link budget of CW/FM integrated transmitter

Downlink Bass				
Modulation Method		AFSK		
Satellite Antenna	Mono-F	ole Antenna		
Orbit Altitude	H[km]	500		
Earth Radius	R[km]	6378.142		
Elevation Angle	$\theta_{EL}[deg]$	10		
	$\theta_{EL}[rad]$	0.174532925		
Winible Timis Andle	θ[rad]	0.245150236		
Visible Limit Angle	θ[deg]	14.04607388		
Maximun Transmission Distance	D[km]	1695.091563		
Maximun Transmission Speed	c[m]	3.0E+08		
Boltzmann Constant	k[W/Hz·K]	1.38E-23		

Satellite				
Transmission Frequency	f[MHz]	437		
	P _{TX} [W]	0.8		
Transmitter Power	P _{TX} [dBW]	-0.96910013		
	P _{TX} [dBm]	29.03089987		
Transmitter Feeding Power Loss	L _{FTX} [dB]	2		
Transmission Antenna Gain	G _{ATX} [dBi]	-2		
Effective Isotropically Radiated Power	P _E [dBm]	25.03089987		
Transmission Antenna Pointing Loss	L _{APTX} [dB]	0		

Characteristic Transmission				
Free Space Loss	L _d [dB]	149.8352642		
Polarized Wave Loss	L _P [dB]	3		
Atmospheric Absorption Loss	L _A [dB]	0		
Rain Loss	L _{RA} [dB]	0		
Various Loss	L _v [dB]	0		
Total Transmission Loss	L _{pr} [dB]	152.8352642		

Ground station			
Receive Antenna	Cross Yagi A	Anntena 2 stack	
ReceivedAntenna Pointing Loss	L _{APRX} [dB]	0	
Received Antenna Gain	G _{ARX} [dBi]	24	
	L _{FRX} [dB]	2	
Received Feeding Power Loss	L _{FRX} [-]	1.584893192	
Received Signal Power	C[dBm]	-105.8043643	
Antenna Noise Temperature	T _A [K]	300	
Feeding Power Line Noise Temperature	T _F [K]	300	
Receiver Noise Temperature	T _E [K]	300	
Ground Station Temperature	T ₀ [K]	300	
Noise Factor	NF[-]	2	
Noise Factor	NF[dB]	3.010299957	
Ground Station System Noise Temperature	T _S [K]	600	
Ground Temperature	$T_G[K]$	300	
Average Temperature	T _m [K]	286	
Sky Noise Temperature Increase	T _{SKY} [K]	0	
Maximun Signal Pass Bandwidth	B[kHz]	16	
Noise Power	N[W]	1.32E-16	
Noise Power	N[dBW]	-158.7784968	
N. D. J. S.	N ₀ [dBW/Hz]	-2.01E+02	
Noise Power density	N ₀ [dBm/Hz]	-1.71E+02	
Receiving Gain	G[dB]	22	
Receive G/T	G/T[dB/K]	-5.781512504	

Demodulation Loss	L _D [dB]	2
Internal Ground Station Transmission Loss	L _G [dB]	0
Ground Station Processing Loss	L ₀ [dB]	2
Bit Rate	B _{ps} [Hz]	1200
Dit Kate	B _{ps} [dBHz]	30.79181246
Bit Error Rate	P _b [-]	0.000001
Receive C/N (Received Power/Noise Power)	C/N ₀ [dB]	22.97
Request E _b /N	$(E_b/N_0)_{req}[dB]$	10.5
Request C/N	$(C/N_0)_{req}[dB]$	12.5
Margin	M[dB]	10.47

Downlink Bass				
Modulation Method	G	GMSK		
Satellite Antenna	Mono-P	ole Antenna		
Orbit Altitude	H[km]	500		
Earth Radius	R[km]	6378.142		
Elevation Angle	$\theta_{EL}[deg]$	10		
Elevation Angle	$\theta_{EL}[rad]$	0.174532925		
Waith Timis Auda	θ[rad]	0.245150236		
Visible Limit Angle	θ[deg]	14.04607388		
Maximun Transmission Distance	D[km]	1695.091563		
Maximun Transmission Speed	c[m]	3.0E+08		
Boltzmann Constant	k[W/Hz·K]	1.38E-23		

Satellite		
Transmission Frequency	f[MHz]	437
	P _{TX} [W]	0.8
Transmitter Power	P _{TX} [dBW]	-0.96910013
	P _{TX} [dBm]	29.03089987
Transmitter Feeding Power Loss	L _{FTX} [dB]	2
Transmission Antenna Gain	G _{ATX} [dBi]	-2
Effective Isotropically Radiated Power	P _E [dBm]	25.03089987
Transmission Antenna Pointing Loss	L _{APTX} [dB]	0

Characteristic Transmission		
Free Space Loss	L _d [dB]	149.8352642
Polarized Wave Loss	$L_P[dB]$	3
Atmospheric Absorption Loss	$L_A[dB]$	0
Rain Loss	L _{RA} [dB]	0
Various Loss	L _v [dB]	0
Total Transmission Loss	L _{pr} [dB]	152.8352642

Ground sta	tion	
Receive Antenna	Cross Yagi A	Anntena 2 stack
ReceivedAntenna Pointing Loss	L _{APRX} [dB]	0
Received Antenna Gain	G _{ARX} [dBi]	24
Received Feeding Power Loss	L _{FRX} [dB]	2
Received Feeding Fower Loss	L _{FRX} [-]	1.584893192
Received Signal Power	C[dBm]	-105.8043643
Antenna Noise Temperature	T _A [K]	300
Feeding Power Line Noise Temperature	$T_F[K]$	300
Receiver Noise Temperature	$T_E[K]$	300
Ground Station Temperature	$T_0[K]$	300
Noise Factor	NF[-]	2
Noise Factor	NF[dB]	3.010299957
Ground Station System Noise Temperature	$T_S[K]$	600
Ground Temperature	$T_G[K]$	300
Average Temperature	T _m [K]	286
Sky Noise Temperature Increase	T _{SKY} [K]	0
Maximun Signal Pass Bandwidth	B[kHz]	26
Noise Power	N[W]	2.15E-16
Noise Fower	N[dBW]	-156.6699632
Naine Dennie dennie.	N ₀ [dBW/Hz]	-2.01E+02
Noise Power density	N ₀ [dBm/Hz]	-1.71E+02
Receiving Gain	G[dB]	22
Receive G/T	G/T[dB/K]	-5.781512504

Demodulation Loss	L _D [dB]	2
Internal Ground Station Transmission Loss	L _G [dB]	0
Ground Station Processing Loss	L ₀ [dB]	2
Bit Rate	B _{ps} [Hz]	9600
Bit Kate	B _{ps} [dBHz]	39.82271233
Bit Error Rate	P _b [-]	0.000001
Receive C/N (Received Power/Noise Power)	C/N ₀ [dB]	20.87
Request E _b /N	$(E_b/N_0)_{req}[dB]$	10.5
Request C/N	$(C/N_0)_{req}[dB]$	12.5
Margin	M[dB]	8.37

Table A. 7 Link budget of CW/FM integrated transmitter and FM receiver

Downlink Bass		
Modulation Method		CW
Satellite Antenna	Mono-Pole Antenna	
Orbit Altitude	H[km]	500
Earth Radius	R[km]	6378.142
Elevation Angle	$\theta_{EL}[deg]$	10
	$\theta_{EL}[rad]$	0.174532925
Visible Limit Angle	θ[rad]	0.245150236
	θ[deg]	14.04607388
Maximun Transmission Distance	D[km]	1695.091563
Maximun Transmission Speed	c[m]	3.0E+08
Boltzmann Constant	k[W/Hz·K]	1.38E-23

Satellite		
Transmission Frequency	f[MHz]	437
	P _{TX} [W]	0.1
Transmitter Power	P _{TX} [dBW]	-10
	P _{TX} [dBm]	20
Transmitter Feeding Power Loss	L _{FTX} [dB]	2
Transmission Antenna Gain	G _{ATX} [dBi]	-2
Effective Isotropically Radiated Power	P _E [dBm]	16
Transmission Antenna Pointing Loss	L _{APTX} [dB]	0

Characteristic Transmission		
Free Space Loss	L _d [dB]	149.8352642
Polarized Wave Loss	$L_P[dB]$	3
Atmospheric Absorption Loss	L _A [dB]	0
Rain Loss	L _{RA} [dB]	0
Various Loss	L _v [dB]	0
Total Transmission Loss	$L_{pr}[dB]$	152.8352642

Ground station	1	
Receive Antenna	Cross Yagi Anntena 2 stack	
ReceivedAntenna Pointing Loss	L _{APRX} [dB]	0
Received Antenna Gain	G _{ARX} [dBi]	24
Received Feeding Power Loss	L _{FRX} [dB]	2
Received reeding Power Loss	L _{FRX} [-]	1.584893192
Received Signal Power	C[dBm]	-114.8352642
Antenna Noise Temperature	T _A [K]	300
Feeding Power Line Noise Temperature	T _F [K]	300
Receiver Noise Temperature	$T_E[K]$	300
Ground Station Temperature	T ₀ [K]	300
Noise Factor	NF[-]	2
Noise ractor	NF[dB]	3.010299957
Ground Station System Noise Temperature	$T_S[K]$	600
Ground Temperature	$T_G[K]$	300
Average Temperature	T _m [K]	286
Sky Noise Temperature Increase	T _{SKY} [K]	0
Maximun Signal Pass Bandwidth	B[kHz]	0.5
Noise Power	N[W]	4.14E-18
Noise Fower	N[dBW]	-173.8299966
N-i D Jit-	N ₀ [dBW/Hz]	-2.01E+02
Noise Power density	N ₀ [dBm/Hz]	-1.71E+02
Receiving Gain	G[dB]	22
Receive G/T	G/T[dB/K]	-5.781512504

Demodulation Loss	L _D [dB]	2
Internal Ground Station Transmission Loss	L _G [dB]	0
Ground Station Processing Loss	$L_0[dB]$	2
Bit Rate	B _{ps} [Hz]	25
Bit Rate	B _{ps} [dBHz]	13.97940009
Bit Error Rate	P _b [-]	0.000001
Receive C/N (Received Power/Noise Power)	C/N[dB]	28.99
Request E _b /N	$(E_b/N)_{req}[dB]$	10.5
Request C/N	(C/N) _{req} [dB]	12.5
Margin	M[dB]	16.49

Uplink Ba	ISS		
Modulation Method	A	AFSK	
Satellite Antenna	Mono-Po	ole Antenna	
Orbit Altitude	H[km]	500	
Earth Radius	R[km]	6378.142	
Elevation Angle	$\theta_{EL}[deg]$	10	
Elevation Angle	$\theta_{EL}[rad]$	0.174532925	
Visible Limit Angle	$\theta[rad]$	0.245150236	
	θ[deg]	14.04607388	
Maximun Transmission Distance	D[km]	1695.091563	
Maximun Transmission Speed	c[m]	3.0E+08	
Boltzmann Constant	k[W/Hz·K]	1.38E-23	

Ground Station		
Transmission Frequency	f[MHz]	146
	P _{TX} [W]	50
Transmitter Power	P _{TX} [dBW]	16.98970004
	P _{TX} [dBm]	46.98970004
Transmitter Feeding Power Loss	L _{FTX} [dB]	2
Transmission Antenna Gain	$G_{ATX}[dBi]$	12
Effective Isotropically Radiated Power	P _E [dBm]	56.98970004
Transmission Antenna Pointing Loss	L _{APTX} [dB]	0

Characteristic Transmission		
Free Space Loss	L _d [dB]	140.3126925
Polarized Wave Loss	$L_P[dB]$	3
Atmospheric Absorption Loss	L _A [dB]	0
Rain Loss	L _{RA} [dB]	0
Various Loss	L _V [dB]	0
Total Transmission Loss	L _{pr} [dB]	143.3126925

Satellite			
Receive Antenna	Mono-Po	Mono-Pole Antenna	
ReceivedAntenna Pointing Loss	L _{APRX} [dB]	0	
Received Antenna Gain	$G_{ARX}[dBi]$	-2	
Received Feeding Power Loss	L _{FRX} [dB]	2	
Received reeding rower Loss	L _{FRX} [-]	1.584893192	
Received Signal Power	C[dBm]	-90.3229925	
Antenna Noise Temperature	$T_A[K]$	300	
Feeding Power Line Noise Temperature	$T_F[K]$	300	
Receiver Noise Temperature	$T_E[K]$	300	
Ground Station Temperature	$T_0[K]$	300	
Noise Factor	NF[-]	2	
INOISE PACIOF	NF[dB]	3.010299957	
Ground Station System Noise Temperature	$T_S[K]$	600	
Ground Temperature	$T_G[K]$	300	
Average Temperature	T _m [K]	286	
Sky Noise Temperature Increase	T _{SKY} [K]	0	
Maximun Signal Pass Bandwidth	B[kHz]	20	
Noise Power	N[W]	1.66E-16	
Ivoise Power	N[dBW]	-157.8093967	
Noise Power density	N ₀ [dBW/Hz]	-2.01E+02	
Noise Power density	N ₀ [dBm/Hz]	-1.71E+02	
Receiving Gain	G[dB]	-4	
Receive G/T	G/T[dB/K]	-31.7815125	

Demodulation Loss	$L_D[dB]$	2
Internal Ground Station Transmission Loss	L _G [dB]	0
Ground Station Processing Loss	L ₀ [dB]	2
Bit Rate	B _{ps} [Hz]	1200
Bit Kate	B _{ps} [dBHz]	30.79181246
Bit Error Rate	P _b [-]	0.000001
Receive C/N (Received Power/Noise Power)	C/N ₀ [dB]	37.49
Request E _b /N	$(E_b/N_0)_{req}[dB]$	10.5
Request C/N	$(C/N_0)_{req}[dB]$	12.5
Margin	M[dB]	24.99

Table A. 8 Link budget of $\,\pi/4$ shift QPSK transmitter and FM transmitter

Downlink π/4 shift QPSK			
Modulation Method	π/4 sh	π/4 shift QPSK	
Satellite Antenna	Mono-P	ole Antenna	
Orbit Altitude	H[km]	500	
Earth Radius	R[km]	6378.142	
Elevation Angle	$\theta_{EL}[deg]$	10	
	$\theta_{EL}[rad]$	0.174532925	
Visible Limit Angle	θ[rad]	0.245150236	
	θ[deg]	14.04607388	
Maximun Transmission Distance	D[km]	1695.091563	
Maximun Transmission Speed	c[m]	3.0E+08	
Boltzmann Constant	k[W/Hz·K]	1.38E-23	

Satellite		
Transmission Frequency	f[MHz]	436
	$P_{TX}[W]$	0.4
Transmitter Power	P _{TX} [dBW]	-3.979400087
	P _{TX} [dBm]	26.02059991
Transmitter Feeding Power Loss	L _{FTX} [dB]	2
Transmission Antenna Gain	G _{ATX} [dBi]	-2
Effective Isotropically Radiated Power	P _E [dBm]	22.02059991
Transmission Antenna Pointing Loss	L _{APTX} [dB]	0

Characteristic Transmission		
Free Space Loss	$L_d[dB]$	149.8153652
Polarized Wave Loss	$L_P[dB]$	3
Atmospheric Absorption Loss	L _A [dB]	0
Rain Loss	L _{RA} [dB]	0
Various Loss	L _V [dB]	0
Total Transmission Loss	$L_{pr}[dB]$	152.8153652

Ground sta	tion	
Receive Antenna	Cross Yagi A	Anntena 2 stack
ReceivedAntenna Pointing Loss	L _{APRX} [dB]	0
Received Antenna Gain	G _{ARX} [dBi]	24
Danisa d Cardina Danisa I ara	L _{FRX} [dB]	2
Received Feeding Power Loss	L _{FRX} [-]	1.584893192
Received Signal Power	C[dBm]	-108.7947653
Antenna Noise Temperature	T _A [K]	300
Feeding Power Line Noise Temperature	T _F [K]	300
Receiver Noise Temperature	T _E [K]	300
Ground Station Temperature	T ₀ [K]	300
Noise Factor	NF[-]	2
Noise Factor	NF[dB]	3.010299957
Ground Station System Noise Temperature	T _S [K]	600
Ground Temperature	$T_G[K]$	300
Average Temperature	T _m [K]	286
Sky Noise Temperature Increase	T _{SKY} [K]	0
Maximun Signal Pass Bandwidth	B[kHz]	30
Noise Power	N[W]	2.48E-16
Noise Power	N[dBW]	-156.0484841
N. D. L.	N ₀ [dBW/Hz]	-2.01E+02
Noise Power density	N ₀ [dBm/Hz]	-1.71E+02
Receiving Gain	G[dB]	22
Receive G/T	G/T[dB/K]	-5.781512504

Demodulation Loss	L _D [dB]	2
Internal Ground Station Transmission Loss	L _G [dB]	0
Ground Station Processing Loss	L ₀ [dB]	2
Bit Rate	B _{ps} [Hz]	38400
	B _{ps} [dBHz]	45.84331224
Bit Error Rate	P _b [-]	0.000001
Receive C/N (Received Power/Noise Power)	C/N ₀ [dB]	17.25
Request E _b /N	$(E_b/N_0)_{req}[dB]$	10.5
Request C/N	$(C/N_0)_{req}[dB]$	12.5
Margin	M[dB]	4.75

Downlink FSK		
Modulation Method	FSK	
Satellite Antenna	Mono-Pole Antenna	
Orbit Altitude	H[km]	500
Earth Radius	R[km]	6378.142
Elevation Angle	$\theta_{EL}[deg]$	10
	$\theta_{EL}[rad]$	0.174532925
Visible Limit Angle	θ[rad]	0.245150236
Visible Limit Angle	θ[deg]	14.04607388
Maximun Transmission Distance	D[km]	1695.091563
Maximun Transmission Speed	c[m]	3.0E+08
Boltzmann Constant	k[W/Hz·K]	1.38E-23

Satellite		
Transmission Frequency	f[MHz]	436
	P _{TX} [W]	0.4
Transmitter Power	P _{TX} [dBW]	-3.979400087
	P _{TX} [dBm]	26.02059991
Transmitter Feeding Power Loss	L _{FTX} [dB]	2
Transmission Antenna Gain	G _{ATX} [dBi]	-2
Effective Isotropically Radiated Power	P _E [dBm]	22.02059991
Transmission Antenna Pointing Loss	L _{APTX} [dB]	0

Characteristic Transmission		
Free Space Loss	$L_d[dB]$	149.8153652
Polarized Wave Loss	$L_P[dB]$	3
Atmospheric Absorption Loss	$L_A[dB]$	0
Rain Loss	L _{RA} [dB]	0
Various Loss	L _V [dB]	0
Total Transmission Loss	L _{pr} [dB]	152.8153652

Ground station		
Receive Antenna	Cross Yagi A	Anntena 2 stack
ReceivedAntenna Pointing Loss	L _{APRX} [dB]	0
Received Antenna Gain	G _{ARX} [dBi]	24
Received Feeding Power Loss	L _{FRX} [dB]	2
Received reeding rower Loss	L _{FRX} [-]	1.584893192
Received Signal Power	C[dBm]	-108.7947653
Antenna Noise Temperature	$T_A[K]$	300
Feeding Power Line Noise Temperature	$T_F[K]$	300
Receiver Noise Temperature	$T_E[K]$	300
Ground Station Temperature	$T_0[K]$	300
Noise Factor	NF[-]	2
Noise Factor	NF[dB]	3.010299957
Ground Station System Noise Temperature	$T_S[K]$	600
Ground Temperature	$T_G[K]$	300
Average Temperature	T _m [K]	286
Sky Noise Temperature Increase	T _{SKY} [K]	0
Maximun Signal Pass Bandwidth	B[kHz]	30
Noise Power	N[W]	2.48E-16
Noise Fower	N[dBW]	-156.0484841
N-i D Jit	N ₀ [dBW/Hz]	-2.01E+02
Noise Power density	N ₀ [dBm/Hz]	-1.71E+02
Receiving Gain	G[dB]	22
Receive G/T	G/T[dB/K]	-5.781512504

Demodulation Loss	L _D [dB]	2
Internal Ground Station Transmission Loss	L _G [dB]	0
Ground Station Processing Loss	L ₀ [dB]	2
Bit Rate	B _{ps} [Hz]	19200
Dit Kale	B _{ps} [dBHz]	42.83301229
Bit Error Rate	P _b [-]	0.000001
Receive C/N (Received Power/Noise Power)	C/N ₀ [dB]	17.25
Request E _b /N	$(E_b/N_0)_{req}[dB]$	10.5
Request C/N	$(C/N_0)_{req}[dB]$	12.5
Margin	M[dB]	4.75

Table A. 9 Link budget of transponder

Downlink Transponder		
Modulation Method		-
Satellite Antenna	Mono-	Pole Antenna
Orbit Altitude	H[km]	500
Earth Radius	R[km]	6378.142
Elevation Angle	$\theta_{EL}[deg]$	10
	$\theta_{EL}[rad]$	0.174532925
Visible Limit Angle	θ[rad]	0.245150236
	θ[deg]	14.04607388
Maximun Transmission Distance	D[km]	1695.091563
Maximun Transmission Speed	c[m]	3.0E+08
Boltzmann Constant	k[W/Hz·K]	1.38E-23

Satellite		
Transmission Frequency	f[MHz]	436
	P _{TX} [W]	0.5
Transmitter Power	P _{TX} [dBW]	-3.010299957
	P _{TX} [dBm]	26.98970004
Transmitter Feeding Power Loss	L _{FTX} [dB]	2
Transmission Antenna Gain	G _{ATX} [dBi]	-2
Effective Isotropically Radiated Power	P _E [dBm]	22.98970004
Transmission Antenna Pointing Loss	L _{APTX} [dB]	0

Characteristic Transmission		
Free Space Loss	L _d [dB]	149.8153652
Polarized Wave Loss	$L_P[dB]$	3
Atmospheric Absorption Loss	L _A [dB]	0
Rain Loss	L _{RA} [dB]	0
Various Loss	L _V [dB]	0
Total Transmission Loss	L _{pr} [dB]	152.8153652

Ground sta	tion		
Receive Antenna	Cross Yagi	Cross Yagi Anntena 2 stack	
ReceivedAntenna Pointing Loss	L _{APRX} [dB]	0	
Received Antenna Gain	G _{ARX} [dBi]	24	
	L _{FRX} [dB]	2	
Received Feeding Power Loss	L _{FRX} [-]	1.584893192	
Received Signal Power	C[dBm]	-107.8256652	
Antenna Noise Temperature	T _A [K]	300	
Feeding Power Line Noise Temperature	T _F [K]	300	
Receiver Noise Temperature	$T_{E}[K]$	300	
Ground Station Temperature	T ₀ [K]	300	
Noise Factor	NF[-]	2	
Noise Factor	NF[dB]	3.010299957	
Ground Station System Noise Temperature	T _S [K]	600	
Ground Temperature	$T_G[K]$	300	
Average Temperature	T _m [K]	286	
Sky Noise Temperature Increase	T _{SKY} [K]	0	
Maximun Signal Pass Bandwidth	B[kHz]	16	
Noise Power	N[W]	1.32E-16	
INOISE FOWEI	N[dBW]	-158.7784968	
Noise Power density	N ₀ [dBW/Hz]	-2.01E+02	
Noise Power density	N ₀ [dBm/Hz]	-1.71E+02	
Receiving Gain	G[dB]	22	
Receive G/T	G/T[dB/K]	-5.781512504	

Demodulation Loss	L _D [dB]	2
Internal Ground Station Transmission Loss	$L_G[dB]$	0
Ground Station Processing Loss	$L_0[dB]$	2
Bit Rate	B _{ps} [Hz]	1200
Bit Kate	B _{ps} [dBHz]	30.79181246
Bit Error Rate	P _b [-]	0.000001
Receive C/N (Received Power/Noise Power)	C/N ₀ [dB]	20.95
Request E _b /N	$(E_b/N_0)_{req}[dB]$	10.5
Request C/N	$(C/N_0)_{req}[dB]$	12.5
Margin	M[dB]	8.45

Uplink Transponder			
Modulation Method		-	
Satellite Antenna	Mono-Pe	Mono-Pole Antenna	
Orbit Altitude	H[km]	500	
Earth Radius	R[km]	6378.142	
Elevation Angle	$\theta_{EL}[deg]$	10	
Elevation Angle	$\theta_{EL}[rad]$	0.174532925	
Visible Limit Angle	θ[rad]	0.245150236	
Visible Limit Angle	θ[deg]	14.04607388	
Maximun Transmission Distance	D[km]	1695.091563	
Maximun Transmission Speed	c[m]	3.0E+08	
Boltzmann Constant	k[W/Hz·K]	1.38E-23	

Ground Station		
Transmission Frequency	f[MHz]	146
Transmitter Power	P _{TX} [W]	10
	P _{TX} [dBW]	10
	P _{TX} [dBm]	40
Transmitter Feeding Power Loss	L _{FTX} [dB]	2
Transmission Antenna Gain	G _{ATX} [dBi]	12
Effective Isotropically Radiated Power	P _E [dBm]	50
Transmission Antenna Pointing Loss	L _{APTX} [dB]	0

Characteristic Transmission		
Free Space Loss	$L_d[dB]$	140.3126925
Polarized Wave Loss	$L_P[dB]$	3
Atmospheric Absorption Loss	L _A [dB]	0
Rain Loss	L _{RA} [dB]	0
Various Loss	L _V [dB]	0
Total Transmission Loss	$L_{pr}[dB]$	143.3126925

Satellite		
Receive antenna	Mono-Pole Antenna	
Ground Station Antenna	L _{APRX} [dB]	0
ReceivedAntenna Pointing Loss	G _{ARX} [dBi]	-2
Received Antenna Gain	L _{FRX} [dB]	2
Received Feeding Power Loss	L _{FRX} [-]	1.584893192
Received reeding rower Loss	C[dBm]	-97.31269255
Received Signal Power	T _A [K]	300
Antenna Noise Temperature	T _F [K]	300
Feeding Power Line Noise Temperature	T _E [K]	300
Receiver Noise Temperature	$T_0[K]$	300
Ground Station Temperature	NF[-]	2
Noise Factor	NF[dB]	3.010299957
Noise Factor	$T_S[K]$	600
Ground Station System Noise Temperature	$T_G[K]$	300
Ground Temperature	$T_m[K]$	286
Average Temperature	T _{SKY} [K]	0
Sky Noise Temperature Increase	B[kHz]	16
Maximun Signal Pass Bandwidth	N[W]	1.32E-16
Noise Power	N[dBW]	-158.7784968
Noise Power	N ₀ [dBW/Hz]	-2.01E+02
Noise Power density	N ₀ [dBm/Hz]	-1.71E+02
Receiving Gain	G[dB]	-4
Receive G/T	G/T[dB/K]	-31.7815125

Demodulation Loss	L _D [dB]	2
Internal Ground Station Transmission Loss	L _G [dB]	0
Ground Station Processing Loss	L ₀ [dB]	2
Bit Rate	B _{ps} [Hz]	1200
Dit Kale	B _{ps} [dBHz]	30.79181246
Bit Error Rate	P _b [-]	0.000001
Receive C/N (Received Power/Noise Power)	C/N ₀ [dB]	31.47
Request E _b /N	$(E_b/N_0)_{req}[dB]$	10.5
Request C/N	$(C/N_0)_{req}[dB]$	12.5
Margin	M[dB]	18.97

Appendix 4 Communication diagram

This satellite is communicated by some amateur radio station. The communication diagram is shown in Fig.A.4.

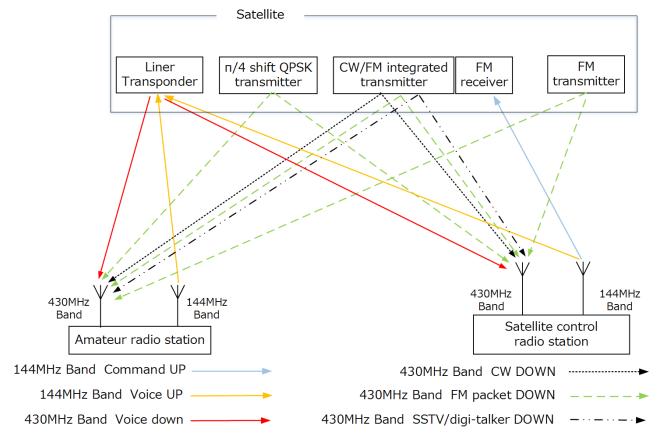


Fig.A.4 Communication diagram